Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Purinergic Signal ; 20(2): 109-113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36941507

RESUMO

María Teresa Miras Portugal devoted most of her scientific life to the study of purinergic signalling. In an important part of her work, she used a model system: the chromaffin cells of the adrenal medulla. It was in these cells that she identified diadenosine polyphosphates, from which she proceeded to the study of adrenomedullary purinome: nucleotide synthesis and degradation, adenosine transport, nucleotide uptake into chromaffin granules, exocytotic release of nucleotides and autocrine regulation of chromaffin cell function via purinoceptors. This short review will focus on the current state of knowledge of the purinoceptors of adrenal chromaffin cells, a subject to which María Teresa made seminal contributions and which she continued to study until the end of her scientific life.


Assuntos
Medula Suprarrenal , Células Cromafins , Portugal , Medula Suprarrenal/metabolismo , Receptores Purinérgicos/metabolismo , Nucleotídeos/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269831

RESUMO

Transient receptor potential melastatin subtype 8 (TRPM8) is a cation channel extensively expressed in sensory neurons and implicated in different painful states. However, the effectiveness of TRPM8 modulators for pain relief is still a matter of discussion, since structurally diverse modulators lead to different results, depending on the animal pain model. In this work, we described the antinociceptive activity of a ß-lactam derivative, RGM8-51, showing good TRPM8 antagonist activity, and selectivity against related thermoTRP channels and other pain-mediating receptors. In primary cultures of rat dorsal root ganglion (DRG) neurons, RGM8-51 potently reduced menthol-evoked neuronal firing without affecting the major ion conductances responsible for action potential generation. This compound has in vivo antinociceptive activity in response to cold, in a mouse model of oxaliplatin-induced peripheral neuropathy. In addition, it reduces cold, mechanical and heat hypersensitivity in a rat model of neuropathic pain arising after chronic constriction of the sciatic nerve. Furthermore, RGM8-51 exhibits mechanical hypersensitivity-relieving activity, in a mouse model of NTG-induced hyperesthesia. Taken together, these preclinical results substantiate that this TRPM8 antagonist is a promising pharmacological tool to study TRPM8-related diseases.


Assuntos
Neuralgia , Canais de Cátion TRPM , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Temperatura Baixa , Modelos Animais de Doenças , Gânglios Espinais/fisiologia , Camundongos , Neuralgia/tratamento farmacológico , Ratos , Células Receptoras Sensoriais , beta-Lactamas
3.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216258

RESUMO

Neuropathic pain is a form of chronic pain arising from damage of the neural cells that sense, transmit or process sensory information. Given its growing prevalence and common refractoriness to conventional analgesics, the development of new drugs with pain relief effects constitutes a prominent clinical need. In this respect, drugs that reduce activity of sensory neurons by modulating ion channels hold the promise to become effective analgesics. Here, we evaluated the mechanical antinociceptive effect of IQM-PC332, a novel ligand of the multifunctional protein downstream regulatory element antagonist modulator (DREAM) in rats subjected to chronic constriction injury of the sciatic nerve as a model of neuropathic pain. IQM-PC332 administered by intraplantar (0.01-10 µg) or intraperitoneal (0.02-1 µg/kg) injection reduced mechanical sensitivity by ≈100% of the maximum possible effect, with ED50 of 0.27 ± 0.05 µg and 0.09 ± 0.01 µg/kg, respectively. Perforated-patch whole-cell recordings in isolated dorsal root ganglion (DRG) neurons showed that IQM-PC332 (1 and 10 µM) reduced ionic currents through voltage-gated K+ channels responsible for A-type potassium currents, low, T-type, and high voltage-activated Ca2+ channels, and transient receptor potential vanilloid-1 (TRPV1) channels. Furthermore, IQM-PC332 (1 µM) reduced electrically evoked action potentials in DRG neurons from neuropathic animals. It is suggested that by modulating multiple DREAM-ion channel signaling complexes, IQM-PC332 may serve a lead compound of novel multimodal analgesics.


Assuntos
Analgésicos/farmacologia , Proteínas Interatuantes com Canais de Kv/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Ligantes , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
4.
STAR Protoc ; 2(4): 100964, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34841278

RESUMO

Low-density cell culture of the postnatal cerebellum, combined with live imaging and single-cell tracking, allows the behavior of postnatal cerebellar neural stem cells (NSCs) and their progeny to be monitored. Cultured cerebellar NSCs maintain their neurogenic nature giving rise, in the same relative proportions that exist in vivo, to the neuronal progeny generated by the three postnatal cerebellar neurogenic niches. This protocol describes the identification of the nature of the progeny through both post-imaging immunocytochemistry and patch-clamp recordings. For complete details on the use and execution of this protocol, please refer to Paniagua-Herranz et al. (2020b).


Assuntos
Cerebelo/citologia , Técnicas Citológicas/métodos , Células-Tronco Neurais/citologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Neuropharmacology ; 197: 108745, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375627

RESUMO

The voltage-sensitive sodium channel NaV1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases. To identify novel regulatory kinases we screened a library of activated kinases and we found that AKT1 was able to directly phosphorylate NaV1.1. In vitro kinase assays revealed that the phosphorylation site was located in the C-terminal part of the large intracellular loop connecting domains I and II of NaV1.1, a region that is known to be targeted by other kinases like PKA and PKC. Electrophysiological recordings revealed that activated AKT1 strongly reduced peak Na+ currents and displaced the inactivation curve to more negative potentials in HEK-293 cell stably expressing NaV1.1. These alterations in current amplitude and steady-state inactivation were mimicked by SC79, a specific activator of AKT1, and largely reverted by triciribine, a selective inhibitor. Neurons expressing endogenous NaV1.1 in primary cultures were identified by expressing a fluorescent protein under the NaV1.1 promoter. There, we also observed a strong decrease in the current amplitude after addition of SC79, but small effects on the inactivation parameters. Altogether, we propose a novel mechanism that might regulate the excitability of neural networks in response to AKT1, a kinase that plays a pivotal role under physiological and pathological conditions, including epileptogenesis.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Fenômenos Eletrofisiológicos , Epilepsias Mioclônicas/genética , Células HEK293 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Rede Nervosa/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ribonucleosídeos/farmacologia , Agonistas de Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia
6.
Brain Struct Funct ; 226(3): 715-741, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33427974

RESUMO

The purinergic system is one of the oldest cell-to-cell communication mechanisms and exhibits relevant functions in the regulation of the central nervous system (CNS) development. Amongst the components of the purinergic system, the ionotropic P2X7 receptor (P2X7R) stands out as a potential regulator of brain pathology and physiology. Thus, P2X7R is known to regulate crucial aspects of neuronal cell biology, including axonal elongation, path-finding, synapse formation and neuroprotection. Moreover, P2X7R modulates neuroinflammation and is posed as a therapeutic target in inflammatory, oncogenic and degenerative disorders. However, the lack of reliable technical and pharmacological approaches to detect this receptor represents a major hurdle in its study. Here, we took advantage of the P2rx7-EGFP reporter mouse, which expresses enhanced green fluorescence protein (EGFP) immediately downstream of the P2rx7 proximal promoter, to conduct a detailed study of its distribution. We performed a comprehensive analysis of the pattern of P2X7R expression in the brain of E18.5 mouse embryos revealing interesting areas within the CNS. Particularly, strong labelling was found in the septum, as well as along the entire neural roof plate zone of the brain, except chorioidal roof areas, but including specialized circumventricular roof formations, such as the subfornical and subcommissural organs (SFO; SCO). Moreover, our results reveal what seems a novel circumventricular organ, named by us postarcuate organ (PArcO). Furthermore, this study sheds light on the ongoing debate regarding the specific presence of P2X7R in neurons and may be of interest for the elucidation of additional roles of P2X7R in the idiosyncratic histologic development of the CNS and related systemic functions.


Assuntos
Encéfalo/patologia , Órgãos Circunventriculares/patologia , Epêndima/patologia , Neuroglia/patologia , Animais , Encéfalo/metabolismo , Órgãos Circunventriculares/metabolismo , Epêndima/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos Transgênicos , Neuroglia/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Receptores Purinérgicos P2X7/metabolismo
7.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171955

RESUMO

We have investigated whether the stress response mediated by the adrenal medulla in rats subjected to chronic constriction injury of the sciatic nerve (CCI) modulates their nocifensive behavior. Treatment with SK29661 (300 mg/kg; intraperitoneal (I.P.)), a selective inhibitor of phenylethanolamine N-methyltransferase (PNMT) that converts noradrenaline (NA) into adrenaline (A), fully reverted mechanical allodynia in the injured hind paw without affecting mechanical sensitivity in the contralateral paw. The effect was fast and reversible and was associated with a decrease in the A to NA ratio (A/NA) in the adrenal gland and circulating blood, an A/NA that was elevated by CCI. 1,2,3,4-tetrahydroisoquinoline-7-sulfonamide (SKF29661) did not affect exocytosis evoked by Ca2+ entry as well as major ionic conductances (voltage-gated Na+, Ca2+, and K+ channels, nicotinic acetylcholine receptors) involved in stimulus-secretion coupling in chromaffin cells, suggesting that it acted by changing the relative content of the two adrenal catecholamines. Denervation of the adrenal medulla by surgical splanchnectomy attenuated mechanical allodynia in neuropathic animals, hence confirming the involvement of the adrenal medulla in the pathophysiology of the CCI model. Inhibition of PNMT appears to be an effective and probably safe way to modulate adrenal medulla activity and, in turn, to alleviate pain secondary to the injury of a peripheral nerve.


Assuntos
Medula Suprarrenal/fisiologia , Hiperalgesia/fisiopatologia , Neuralgia/metabolismo , Glândulas Suprarrenais/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Catecolaminas/farmacologia , Células Cromafins/efeitos dos fármacos , Modelos Animais de Doenças , Epinefrina/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/fisiopatologia , Norepinefrina/metabolismo , Feniletanolamina N-Metiltransferase/antagonistas & inibidores , Feniletanolamina N-Metiltransferase/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Stem Cell Reports ; 15(5): 1080-1094, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33065045

RESUMO

Little is known about the intrinsic specification of postnatal cerebellar neural stem cells (NSCs) and to what extent they depend on information from their local niche. Here, we have used an adapted cell preparation of isolated postnatal NSCs and live imaging to demonstrate that cerebellar progenitors maintain their neurogenic nature by displaying hallmarks of NSCs. Furthermore, by using this preparation, all the cell types produced postnatally in the cerebellum, in similar relative proportions to those observed in vivo, can be monitored. The fact that neurogenesis occurs in such organized manner in the absence of signals from the local environment, suggests that cerebellar lineage progression is to an important extent governed by cell-intrinsic or pre-programmed events. Finally, we took advantage of the absence of the niche to assay the influence of the vesicular nucleotide transporter inhibition, which dramatically reduced the number of NSCs in vitro by promoting their progression toward neurogenesis.


Assuntos
Cerebelo/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Proteínas de Transporte de Nucleotídeos/fisiologia , Imagem com Lapso de Tempo , Animais , Ciclo Celular , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Análise de Célula Única
9.
Front Mol Neurosci ; 12: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787866

RESUMO

Downstream Regulatory Element Antagonist Modulator (DREAM)/KChIP3/calsenilin is a neuronal calcium sensor (NCS) with multiple functions, including the regulation of A-type outward potassium currents (I A). This effect is mediated by the interaction between DREAM and KV4 potassium channels and it has been shown that small molecules that bind to DREAM modify channel function. A-type outward potassium current (I A) is responsible of the fast repolarization of neuron action potentials and frequency of firing. Using surface plasmon resonance (SPR) assays and electrophysiological recordings of KV4.3/DREAM channels, we have identified IQM-266 as a DREAM ligand. IQM-266 inhibited the KV4.3/DREAM current in a concentration-, voltage-, and time-dependent-manner. By decreasing the peak current and slowing the inactivation kinetics, IQM-266 led to an increase in the transmembrane charge ( Q K V 4.3 / DREAM ) at a certain range of concentrations. The slowing of the recovery process and the increase of the inactivation from the closed-state inactivation degree are consistent with a preferential binding of IQM-266 to a pre-activated closed state of KV4.3/DREAM channels. Finally, in rat dorsal root ganglion neurons, IQM-266 inhibited the peak amplitude and slowed the inactivation of I A. Overall, the results presented here identify IQM-266 as a new chemical tool that might allow a better understanding of DREAM physiological role as well as modulation of neuronal I A in pathological processes.

10.
Int J Mol Sci ; 20(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609840

RESUMO

We have tested the hypothesis that neuropathic pain acting as a stressor drives functional plasticity in the sympathoadrenal system. The relation between neuropathic pain and adrenal medulla function was studied with behavioral, immunohistochemical and electrophysiological techniques in rats subjected to chronic constriction injury of the sciatic nerve. In slices of the adrenal gland from neuropathic animals, we have evidenced increased cholinergic innervation and spontaneous synaptic activity at the splanchnic nerve⁻chromaffin cell junction. Likewise, adrenomedullary chromaffin cells displayed enlarged acetylcholine-evoked currents with greater sensitivity to α-conotoxin RgIA, a selective blocker of α9 subunit-containing nicotinic acetylcholine receptors, as well as increased exocytosis triggered by voltage-activated Ca2+ entry. Altogether, these adaptations are expected to facilitate catecholamine output into the bloodstream. Last, but most intriguing, functional and immunohistochemical data indicate that P2X3 and P2X7 purinergic receptors and transient receptor potential vanilloid-1 (TRPV1) channels are overexpressed in chromaffin cells from neuropathic animals. These latter observations are reminiscent of molecular changes characteristic of peripheral sensitization of nociceptors following the lesion of a peripheral nerve, and suggest that similar phenomena can occur in other tissues, potentially contributing to behavioral manifestations of neuropathic pain.


Assuntos
Neuralgia/patologia , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Canais de Cátion TRPV/metabolismo , Acetilcolina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Medula Suprarrenal/metabolismo , Medula Suprarrenal/patologia , Animais , Capsaicina/farmacologia , Catecolaminas/metabolismo , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Modelos Animais de Doenças , Potenciais Evocados/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neuralgia/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Canais de Cátion TRPV/genética
11.
Front Mol Neurosci ; 11: 442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618601

RESUMO

Prolonged seizures (status epilepticus, SE) may drive hippocampal dysfunction and epileptogenesis, at least partly, through an elevation in neurogenesis, dysregulation of migration and aberrant dendritic arborization of newly-formed neurons. MicroRNA-22 was recently found to protect against the development of epileptic foci, but the mechanisms remain incompletely understood. Here, we investigated the contribution of microRNA-22 to SE-induced aberrant adult neurogenesis. SE was induced by intraamygdala microinjection of kainic acid (KA) to model unilateral hippocampal neuropathology in mice. MicroRNA-22 expression was suppressed using specific oligonucleotide inhibitors (antagomir-22) and newly-formed neurons were visualized using the thymidine analog iodo-deoxyuridine (IdU) and a green fluorescent protein (GFP)-expressing retrovirus to visualize the dendritic tree and synaptic spines. Using this approach, we quantified differences in the rate of neurogenesis and migration, the structure of the apical dendritic tree and density and morphology of dendritic spines in newly-formed neurons.SE resulted in an increased rate of hippocampal neurogenesis, including within the undamaged contralateral dentate gyrus (DG). Newly-formed neurons underwent aberrant migration, both within the granule cell layer and into ectopic sites. Inhibition of microRNA-22 exacerbated these changes. The dendritic diameter and the density and average volume of dendritic spines were unaffected by SE, but these parameters were all elevated in mice in which microRNA-22 was suppressed. MicroRNA-22 inhibition also reduced the length and complexity of the dendritic tree, independently of SE. These data indicate that microRNA-22 is an important regulator of morphogenesis of newly-formed neurons in adults and plays a role in supressing aberrant neurogenesis associated with SE.

12.
Pflugers Arch ; 470(1): 61-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28836008

RESUMO

Chromaffin cells from the adrenal medulla participate in stress responses by releasing catecholamines into the bloodstream. Main control of adrenal catecholamine secretion is exerted both neurally (by the splanchnic nerve fibers) and humorally (by corticosteroids, circulating noradrenaline, etc.). It should be noted, however, that secretory products themselves (catecholamines, ATP, opioids, ascorbic acid, chromogranins) could also influence the secretory response in an autocrine/paracrine manner. This form of control is activity-dependent and can be either inhibitory or excitatory. Among the inhibitory influences, it stands out the one mediated by α2-adrenergic autoreceptors activated by released catecholamines. α2-adrenoceptors are G protein-coupled receptors capable to inhibit exocytotic secretion through a direct interaction of Gßγ subunits with voltage-gated Ca2+ channels. Interestingly, upon intense and/or prolonged stimulation, α2-adrenergic receptors become desensitized by the intervention of G protein-coupled receptor kinase 2 (GRK2). In several experimental models of heart failure, there has been reported the up-regulation of GRK2 and the loss of functioning of inhibitory α2-adrenoceptors resulting in enhanced release of adrenomedullary catecholamines. Given the importance of circulating catecholamines in the pathophysiology of heart failure, the recovery of α2-adrenergic modulation of the secretory response from chromaffin cells appears as a novel strategy for a better control of the patients with this cardiac disease.


Assuntos
Medula Suprarrenal/metabolismo , Células Cromafins/metabolismo , Cardiopatias/etiologia , Receptores Adrenérgicos alfa 2/metabolismo , Medula Suprarrenal/citologia , Medula Suprarrenal/fisiologia , Animais , Catecolaminas/metabolismo , Células Cromafins/fisiologia , Humanos
13.
Hum Mol Genet ; 25(19): 4143-4156, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466191

RESUMO

Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved. Here, to evaluate whether neurodevelopmental alterations are underlying the seizures associated to HPP, we performed morphological and functional characterization of postnatal homozygous TNAP null mice, a model of HPP. These analyses revealed that TNAP deficient mice present an increased proliferation of neural precursors, an altered neuronal morphology, and an augmented neuronal activity. We found that these alterations were associated with a partial downregulation of the purinergic P2X7 receptor (P2X7R). Even though deficient P2X7R mice present similar neurodevelopmental alterations, they do not develop neonatal seizures. Accordingly, we found that the additional blockage of P2X7R prevent convulsions and extend the lifespan of mice lacking TNAP. In agreement with these findings, we also found that exogenous administration of ATP or TNAP antagonists induced seizures in adult wild-type mice by activating P2X7R. Finally, our results also indicate that the anticonvulsive effects attributed to vit-B6 may be due to its capacity to block P2X7R. Altogether, these findings suggest that the purinergic signalling regulates the neurodevelopmental alteration and the neonatal seizures associated to HPP.


Assuntos
Fosfatase Alcalina/genética , Doenças Ósseas Metabólicas/genética , Hipofosfatasia/genética , Receptores Purinérgicos P2X7/genética , Convulsões/genética , Trifosfato de Adenosina/administração & dosagem , Fosfatase Alcalina/antagonistas & inibidores , Animais , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/fisiopatologia , Calcinose/genética , Calcinose/metabolismo , Calcinose/fisiopatologia , Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipofosfatasia/tratamento farmacológico , Hipofosfatasia/metabolismo , Hipofosfatasia/fisiopatologia , Camundongos , Camundongos Knockout , Mutação , Receptores Purinérgicos P2X7/biossíntese , Convulsões/metabolismo , Convulsões/fisiopatologia , Vitamina B 6/administração & dosagem
14.
J Neurosci ; 36(22): 5920-32, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251615

RESUMO

UNLABELLED: Neuroinflammation is thought to contribute to the pathogenesis and maintenance of temporal lobe epilepsy, but the underlying cell and molecular mechanisms are not fully understood. The P2X7 receptor is an ionotropic receptor predominantly expressed on the surface of microglia, although neuronal expression has also been reported. The receptor is activated by the release of ATP from intracellular sources that occurs during neurodegeneration, leading to microglial activation and inflammasome-mediated interleukin 1ß release that contributes to neuroinflammation. Using a reporter mouse in which green fluorescent protein is induced in response to the transcription of P2rx7, we show that expression of the receptor is selectively increased in CA1 pyramidal and dentate granule neurons, as well as in microglia in mice that developed epilepsy after intra-amygdala kainic acid-induced status epilepticus. P2X7 receptor levels were increased in hippocampal subfields in the mice and in resected hippocampus from patients with pharmacoresistant temporal lobe epilepsy. Cells transcribing P2rx7 in hippocampal slices from epileptic mice displayed enhanced agonist-evoked P2X7 receptor currents, and synaptosomes from these animals showed increased P2X7 receptor levels and altered calcium responses. A 5 d treatment of epileptic mice with systemic injections of the centrally available, potent, and specific P2X7 receptor antagonist JNJ-47965567 (30 mg/kg) significantly reduced spontaneous seizures during continuous video-EEG monitoring that persisted beyond the time of drug presence in the brain. Hippocampal sections from JNJ-47965567-treated animals obtained >5 d after treatment ceased displayed strongly reduced microgliosis and astrogliosis. The present study suggests that targeting the P2X7 receptor has anticonvulsant and possibly disease-modifying effects in experimental epilepsy. SIGNIFICANCE STATEMENT: Temporal lobe epilepsy is the most common and drug-resistant form of epilepsy in adults. Neuroinflammation is implicated as a pathomechanism, but the upstream mechanisms driving gliosis and how important this is for seizures remain unclear. In our study, we show that the ATP-gated P2X7 receptor is upregulated in experimental epilepsy and resected hippocampus from epilepsy patients. Targeting the receptor with a new centrally available antagonist, JNJ-47965567, suppressed epileptic seizures well beyond the time of treatment and reduced underlying gliosis in the hippocampus. The findings suggest a potential disease-modifying treatment for epilepsy based on targeting the P2X7 receptor.


Assuntos
Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/tratamento farmacológico , Gliose/tratamento farmacológico , Gliose/etiologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/etiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Adolescente , Adulto , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Piperazinas/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Adulto Jovem
15.
Sci Rep ; 5: 17486, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631939

RESUMO

The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus. P2X7R-gated inward currents were suppressed in the contralateral hippocampus and P2rx7 mRNA was selectively uploaded into the RNA-induced silencing complex (RISC), suggesting microRNA targeting. Analysis of RISC-loaded microRNAs using a high-throughput platform, as well as functional assays, suggested the P2X7R is a target of microRNA-22. Inhibition of microRNA-22 increased P2X7R expression and cytokine levels in the contralateral hippocampus after status epilepticus and resulted in more frequent spontaneous seizures in mice. The major pro-inflammatory and hyperexcitability effects of microRNA-22 silencing were prevented in P2rx7(-/-) mice or by treatment with a specific P2X7R antagonist. Finally, in vivo injection of microRNA-22 mimics transiently suppressed spontaneous seizures in mice. The present study supports a role for post-transcriptional regulation of the P2X7R and suggests therapeutic targeting of microRNA-22 may prevent inflammation and development of a secondary epileptogenic focus in the brain.


Assuntos
Hipocampo/fisiologia , MicroRNAs/genética , Receptores Purinérgicos P2X7/genética , Estado Epiléptico/genética , Animais , Astrócitos/patologia , Eletroencefalografia , Regulação da Expressão Gênica , Hipocampo/fisiopatologia , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Interferência de RNA , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia
16.
Eur J Pharmacol ; 744: 190-202, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25446427

RESUMO

The subcellular distribution and early signalling events of P2X7 receptors were studied in mouse cerebellar granule neurons. Whole-cell patch-clamp recordings evidenced inwardly directed non-desensitizing currents following adenosine 5'-triphosphate (ATP; 600 µM) or 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 µM) administration to cells bathed in a medium with no-added divalent cations (Ca(2+) and Mg(2+)). Nucleotide-activated currents were inhibited by superfusion of 2.5 mM Ca(2+), 1.2 mM Mg(2+) or 100 nM Brilliant Blue G (BBG), hence indicating the expression of ionotropic P2X7 receptors. Fura-2 calcium imaging showed [Ca(2+)]i elevations in response to ATP or BzATP at the somas and at a small number of axodendritic regions of granule neurons. Differential sensitivity of these [Ca(2+)]i increases to three different P2X7 receptor antagonists (100 nM BBG, 10 µM 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinolinesulfonic acid ester, KN-62, and 1 µM 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine hydrochloride hydrate, A-438079) revealed that P2X7 receptors are co-expressed with different P2Y receptors along the plasmalemma of granule neurons. Finally, experiments with the fluorescent dye YO-PRO-1 indicated that prolonged stimulation of P2X7 receptors does not lead to the opening of a membrane pore permeable to large cations. Altogether, our results emphasise the expression of functional P2X7 receptors at both the axodendritic and somatic levels in mouse cerebellar granule neurons, and favour the notion that P2X7 receptors might function in a subcellular localisation-specific manner: presynaptically, by controlling glutamate release, and on the cell somas, by supporting granule neuron survival against glutamate excytotoxicity.


Assuntos
Cerebelo/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Cerebelo/efeitos dos fármacos , Fura-2/farmacologia , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Tetrazóis/farmacologia
17.
J Pharmacol Exp Ther ; 347(3): 802-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24101734

RESUMO

The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg(2+), and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg(2+) and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-d-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotic-type mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.


Assuntos
Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Cerebelo/citologia , Receptores Purinérgicos P2X7/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/ultraestrutura , Benzoxazóis/metabolismo , Western Blotting , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/ultraestrutura , Citosol/metabolismo , Feminino , Corantes Fluorescentes , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Compostos de Quinolínio/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos
18.
Pflugers Arch ; 462(4): 545-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21755285

RESUMO

BK channels modulate cell firing in excitable cells in a voltage-dependent manner regulated by fluctuations in free cytosolic Ca(2+) during action potentials. Indeed, Ca(2+)-independent BK channel activity has ordinarily been considered not relevant for the physiological behaviour of excitable cells. We employed the patch-clamp technique and selective BK channel blockers to record K(+) currents from bovine chromaffin cells at minimal intracellular (about 10 nM) and extracellular (free Ca(2+)) Ca(2+) concentrations. Despite their low open probability under these conditions (V(50) of +146.8 mV), BK channels were responsible for more than 25% of the total K(+) efflux during the first millisecond of a step depolarisation to +20 mV. Moreover, BK channels activated about 30% faster (τ = 0.55 ms) than the rest of available K(+) channels. The other main source of fast voltage-dependent K(+) efflux at such a low Ca(2+) was a transient K(+) (I(A)-type) current activating with V (50) = -14.2 mV. We also studied the activation of BK currents in response to action potential waveforms and their contribution to shaping action potentials both in the presence and the absence of extracellular Ca(2+). Our results show that BK channels activate during action potentials and accelerate cell repolarisation even at minimal Ca(2+) concentration, and suggest that they could do so also in the presence of extracellular Ca(2+), before Ca(2+) entering the cell facilitates their activity.


Assuntos
Potenciais de Ação/fisiologia , Células Cromafins/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Bovinos , Células Cultivadas , Indóis/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia
19.
An. R. Acad. Farm ; 76(4): 435-457, oct.-dic. 2010. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-88507

RESUMO

El descubrimiento de receptores nicotínicos (nAChRs) formadospor las subunidades α9 y α10 en las células de los epitelios sensitivosdel sistema vestibular y auditivo ha motivado su búsqueda enestructuras del sistema nervioso autónomo, como las células cromafinesde la médula adrenal, en las que podrían inducir la hiperpolarizaciónde la membrana celular mediante la activación de canales deK+ dependientes de Ca2+ de baja conductancia iónica (canales SK). Elobjetivo fundamental de nuestro trabajo ha sido determinar la presenciay, en su caso, caracterizar funcionalmente el nAChR α9α10 enlas células cromafines de la médula adrenal de la rata. Con ese propósito,hemos empleado cultivos primarios de células cromafines obtenidasde la glándula adrenal de rata y recurrido a la técnica electrofisiológicade patch-clamp para registrar las corrientes iónicasgeneradas por la activación de los nAChRs del conjunto de la membranacelular. Asimismo, hemos empleado la α-conotoxina RgIA, unpéptido capaz de bloquear de forma selectiva los nAChRs formadospor las subunidades α9 y α10. Los resultados obtenidos aportan evidenciasfarmacológicas que permiten concluir que las células cromafinesde la rata expresan nAChRs α9α10 funcionales que, además, desempeñarían un papel modulador comportamiento eléctrico de dichascélulas(AU)


The identification of acetylcholine nicotinic receptors (nAChRs)formed by α9 and α10 subunits in the sensory cells of the vestibularand auditory systems, prompted us to investigate their presence inadrenomedullary chromaffin cells, in which they could mediate membranehyperpolarization through the activation of small-conductanceCa2+-dependent K+ channels (SK channels). The aim of the currentstudy has been to pharmacologically identify α9α10 nAChRs and initiatetheir functional characterization in isolated chromaffin cellsfrom the rat adrenal medulla. We have employed the patch clamptechnique to record either the ionic currents generated by the activationof nAChRs or the associated changes in membrane potential. Wetook advantage of the specificity of α-conotoxin RgIA for the nAChRsformed by α9 and α10 subunits. Our pharmacological results suggestthat the rat chromaffin cells express functional α9α10 nAChRs thatwould influence the electrical behaviour of these cells(AU)


Assuntos
Humanos , Receptores Nicotínicos/análise , Células Cromafins , Potencial da Membrana Mitocondrial , Acetilcolina/farmacocinética
20.
J Neurosci ; 30(19): 6732-42, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20463235

RESUMO

An increase in circulating adrenal catecholamine levels constitutes one of the mechanisms whereby organisms cope with stress. Accordingly, stimulus-secretion coupling within the stressed adrenal medullary tissue undergoes persistent remodeling. In particular, cholinergic synaptic neurotransmission between splanchnic nerve terminals and chromaffin cells is upregulated in stressed rats. Since synaptic transmission is mainly supported by activation of postsynaptic neuronal acetylcholine nicotinic receptors (nAChRs), we focused our study on the role of alpha9-containing nAChRs, which have been recently described in chromaffin cells. Taking advantage of their specific blockade by the alpha-conotoxin RgIA (alpha-RgIA), we unveil novel functional roles for these receptors in the stimulus-secretion coupling of the medulla. First, we show that in rat acute adrenal slices, alpha9-containing nAChRs codistribute with synaptophysin and significantly contribute to EPSCs. Second, we show that these receptors are involved in the tonic inhibitory control exerted by cholinergic activity on gap junctional coupling between chromaffin cells, as evidenced by an increased Lucifer yellow diffusion within the medulla in alpha-RgIA-treated slices. Third, we unexpectedly found that alpha9-containing nAChRs dominantly (>70%) contribute to acetylcholine-induced current in cold-stressed rats, whereas alpha3 nAChRs are the main contributing channels in unstressed animals. Consistently, expression levels of alpha9 nAChR transcript and protein are overexpressed in cold-stressed rats. As a functional relevance, we propose that upregulation of alpha9-containing nAChR channels and ensuing dominant contribution in cholinergic signaling may be one of the mechanisms whereby adrenal medullary tissue appropriately adapts to increased splanchnic nerve electrical discharges occurring in stressful situations.


Assuntos
Bulbo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Nicotínicos/metabolismo , Estresse Fisiológico/fisiologia , Acetilcolina/metabolismo , Animais , Temperatura Baixa , Difusão , Potenciais Pós-Sinápticos Excitadores/fisiologia , Junções Comunicantes/fisiologia , Técnicas In Vitro , Isoquinolinas , Inibição Neural/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , Sinaptofisina/metabolismo , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...